

510 N. Crosslane Rd. Monroe, Georgia 30656 (770) 266-6915 fax (678) 643-1758

PDH & Professional Training

PDH Storm, by Engineers Edge, LLC

J. PAUL GUYER, P.E., R.A.

Paul Guyer is a registered civil engineer, mechanical engineer, fire protection engineer and architect with over 35 years experience designing all types of buildings and related infrastructure. For an additional 9 years he was a public policy advisor on the staff of the California Legislature dealing with infrastructure issues. He is a graduate of Stanford University and has held numerous local, state and national offices with the American Society of Civil Engineers and National Society of Professional Engineers. He is a Fellow of the American Society of Civil Engineers and the Architectural Engineering Institute.

CONTENTS

- 1. INTRODUCTION
- 1.1 SCOPE
- 1.2 RELATED CRITERIA
- 1.3 SOLAR ENERGY
- 2. FLAT PLATE SOLAR COLLECTORS
- 2.1 COLLECTORS
- 2.2 ENERGY STORAGE AND AUXILIARY HEAT
- 2.3 DOMESTIC HOT WATER SYSTEMS (DHW)
- 2.4 THERMOSYPHON, BATCH AND INTEGRAL COLLECTOR SYSTEMS
- 2.5 SPACE HEATING AND DHW SYSTEMS
- 2.6 PASSIVE SYSTEMS
- 2.7 SOLAR COOLING SYSTEMS
- 2.8 SYSTEM CONTROLS

This course is adapted from the *Unified Facilities Criteria* of the United States government, which is in the public domain, has unlimited distribution and is not copyrighted.

The Figures, Tables and Symbols in this document are in some cases a little difficult to read, but they are the best available. DO NOT PURCHASE THIS COURSE IF THE FIGURES, TABLES AND SYMBOLS ARE NOT ACCEPTABLE TO YOU.

1. INTRODUCTION

1.1 SCOPE. This course presents design criteria and cost analysis methods for the sizing and justification of solar heat collectors for potable water and space heaters. Information is presented to enable engineers to understand solar space conditioning and water heating systems or conduct feasibility studies based on solar collector performance, site location, and economics. Both retrofit and new installations are considered.

1.2 RELATED CRITERIA. Standards and performance criteria relating to solar heating systems have been evolved by government agencies and various associations and institutes. The most widely used are listed below. Because solar technology is a continuously evolving field, be aware that publications listed below may have been revised or superseded.

Sub	ect

Document

Solar Collector Instantaneous Performance	ASHRAE Standard 93-77, "Methods of Testing to Determine the Thermal Performance of Solar Collectors"
Thermal Storage Devices	ASHRAE Standard 94-77, "Methods of Testing Thermal Storage Devices Based on Thermal Performance"
Complete Solar Collector Performance Evaluation	National Bureau of Standards, NBSIR 78-1305A, "Provisional Flat Plate Solar Collector Testing Procedures: First Revision"
Testing Solar Hot Water Heaters (includes Thermo- syphon, Batch, Breadbox, or Integral Storage Collectors)	ASHRAE Standard 95-81, "Methods of Testing to Determine the Thermal Performance of Solar Domestic Water Heating Systems"
Testing Swimming Pool Solar Collectors	ASHRAE Standard 98-80, "Methods of Testing to Determine the Thermal Performance of Unglazed Flat-Plate Liquid Solar Collectors"

Testing Tracking Concentrator Collectors

Solar System Performance

Property Standards for Solar Systems

Property Standards Developed for HUD Domestic Hot Water Initiative

Solar Collector Certification and Labeling

Solar Collector Certification, Rating, and Labeling

Building Code

Overall Standards Summary

Installation Guidelines

Solar Energy Industries Association, "Methodology for Determining the Thermal Performance Rating for Tracking Concentrator Solar Collectors"

National Bureau of Standards, NBSIR 76-1187, "Interim Performance Criteria for Solar Heating and Cooling Systems in Commercial Buildings"

HUD Report 4930.2, "Intermediate Minimum Property Standards Supplement, Solar Heating and Domestic Hot Water Systems"

National Bureau of Standards, NBSIR 77-1272, "Intermediate Standards for Solar Domestic Hot Water Systems/HUD Initiative"

ARI Standard 910, "The Air Conditioning and Refrigeration Institute (ARI) Certification Program for Solar Collectors"

Solar Energy Industries Association Standard, Directory of SRCC Certified Solar Collector Ratings

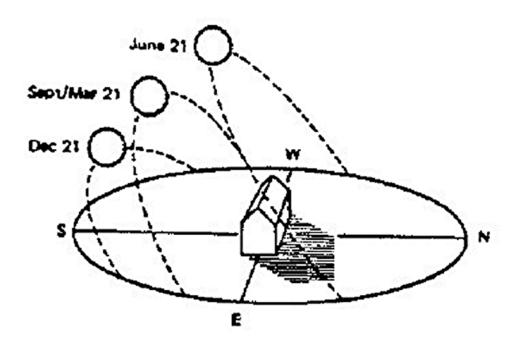
Council of American Building Officials DOE/CS/34281-01, "Recommended Requirements to Code Officials for Solar Heating, Cooling, and Hot Water Systems"

National Bureau of Standards, NBSIR 78-1143A, "Plan for the Development and Implementation of Standards for Solar Heating and Cooling Applications"; or "ASTM Standards on Solar Energy", ASTM Committee E-44

National Bureau of Standards, NBS Tech. Note 1134, "Guidelines for the Installation of Solar Components on Low Sloped Roofs"; and Dept. of Energy,

	"Installation Guidelines for Solar DHW Systems in One and Two-Family Dwellings"; and National Bureau of Standards, NBSIR 80-2116, "Dimensional Considerations in Solar Installations"; and Sheet Metal and Air Conditioning Contractor National Association, Inc., "Installation Standards for One and Two- Family Dwellings and Multifamily Housing Including Solar"
Solar Materials and Components	Dept. of Energy, DOE/TIC-11374 "Solar Heating Materials Handbook"; and National Bureau of Standards Technical Note 1132, "Solar Energy Systems - Standards for Cover Plates for Flat Plate Collectors"; and National Bureau of Standards, NBSIR
	National Bureau of Standards, NBSIR 79-1913, "Solar Energy Systems - Standards for Rubber Hose"; and National Bureau of Standards, NBSIR
	81-2232, "Solar Energy Systems - Standards for Absorber Materials"
Miscellaneous Tests	National Bureau of Standards, NBSIR 81-2344, "Fire Testing of Roof-Mounted Solar Collectors by ASTM E108"; and
	National Bureau of Standards, NBSIR 81- 2199, "Wind, Earthquake, Snow, and Hail Loads on Solar Collectors"; and
	NBSIR 82-2487, "Hail Impact Testing Procedures for Solar Collector Covers"
Product Safety	National Bureau of Standards, NBSIR78- (See also HUD Report 4930.2) 1532, "Environmental and Safety Considerations for Solar Heating and Cooling Applications"
Certified Test Labs	National Bureau of Standards, NBSIR
© Paul Guyer 2012	5

78-1535, "Laboratories Technically Qualified to Test Solar Collectors in Accordance with ASHRAE Standard 93-77"


In addition to these standards, there are plumbing standards published by The International Association of Mechanical and Plumbing Officials (IAMPO), and various state building codes.

1.3 SOLAR ENERGY.

1.3.1 SOLAR RADIATION. Energy from the sun is received by the earth as electromagnetic radiation. Most of the energy is received in the visible and infrared portions and a small amount as ultraviolet radiation. North of the Tropic of Cancer (23 deg. N latitude), the sun makes a daily arc across the southern sky from east to west as shown in Figure 1-1. For a typical location at 32 deg. N latitude the sun would be 81.5 deg. above the southern horizon or nearly overhead at noon (solar time) on June 21 while on December 21 it would be only 34.6 deg. above the horizon. Solar insolation (I) is measured in Langleys (L) or Btu/ft². One Langley equals 3.688 Btu/ft². The amount of solar energy that exists outside the atmosphere, often called the solar constant, is 116.4 L/hr or 429.2 Btu/ ft²-hr. At most 70% to 80% of this amount will strike the earth's surface, the remainder being absorbed or reflected in the atmosphere. Monthly average and yearly average daily insolation data for numerous locations are given in Table 1-1. In general, the higher the latitude, the less insolation is received on a horizontal surface.

1.3.2 COLLECTING SOLAR ENERGY. Collection of solar energy is based on the very high absorption of radiant energy by dull, black surfaces and on the "greenhouse effect." The latter refers to the ability of glass to transmit visible radiation but prevent the loss of heat from the collector plate which radiates at longer wavelengths (infrared frequencies). Glass (or plastic) cover plates are generally used over flat absorber plates to reduce heat loss (see Figure 1-2). The heated absorber plate may have a fluid (water, air or other) pass over it or through tubes attached to the plate. The fluid thus

heated may be used to heat potable water, heat spaces, or drive an absorption or Rankine power cycle air conditioner.

The sun's path across the sky at specific times of year

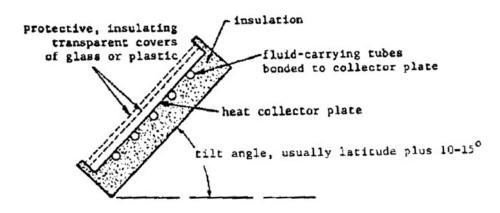


Figure 1-2

Schematic cross-section of typical solar collector with heavy black insulation and two cover sheets

STATE AND STATION	LATITUDE	(ML	603	W	Bay	HAT.	NUL .	14	¥16	SXP	901	NUM	DRC	AUTHUAL
Fi crui rughan	#.+5.55	106.6	1.1.46	1296.5	3673.5	1054.4	1918.5	1809.8	1123.8	1454.6	1210.9	6.128	661.4	1346.1
Mobile	R.14.00	528.2	9. 0001	1407.5	1724.7	1672.1	1868.5	1715.3	1641 5	1449.4	1298.7	1 556	159.2	1.1861
Nontgonery	H.BYCT	1.121	1013.0	1340.4	1729.9	1897.4	1972.3	0.1481	1.245.7	1.1340	1266.6	4.74	119.4	9.1961
ALASKA														
Adak	*.E5.15	231.2	432.4	716.4	1032.6	1179.6	0.2811	1120.4	9.840	159.3	\$28.7	0.100	187.7	118.8
Annelte	N.2 .55	177.9	7.410	1.11	1149.5	1473.1	1465.6	1439.2	1162.3	812.2	422.2	218.6	122.5	3.44.6
Parrow	H.BTT.L	0.0	13.6	490.5	1050.2	1140.0	1527.5	1.9241	8.728	6.418	125.7	9 -	0.0	\$15.0
Fetrbanks	A.64.49	10.1	122	674.2	9.5911	1603.6	9751.9	1542.5	2118.0	109.4	292.6	74.1	2.5	747.8
Kodiak	R. 51.15	C.941	9.550	6.184	1207.0	1376.3	1529.9	1406.2	1164.2	194.0	469.2	204.5	1.16	196.1
A1120KA														
PROGREE	A.92.52	C.1501	1.4761	1914.1	8.4265	2676.5	2139.2	2486.5	2297.6	2015.4	1576.5	2.0211	932.0	1867.4
Turson	R.1 .26	1040.0	0. ((+1	1864.3	2363.0	2673.4	2729.6	1.6+65	2187.9	978.8	1601.9	1208.4	9.200	1872.3
Yuna	N.04.20	1046.1	2.6441	1919.2	2412.8	2728.3	2013.9	4.6245	2329.3	2051.0	1622.8	1214.7	1000.1	1923.7
ANKANSAS														
Port Smith	R.02-55	1.241	9.866	1311.7	1615.9	1.5161	2089.4	2045.3	1877.4	5-1051	1200.7			1404.3
Little Rock	A	C. (Ct	1002.8	1312.7	1410.7	1+29.3	2106.5	2032.3	1069.5	1519.0	1226.3	2-1+B	1.613	1404.4
CALTPORNEA	s (,	}												
Rekeretield	35*25*	766.4	1101.9	1594.8	1.4602	2509.1	2749.3	2683.5	2420.7	8.1991.8	1456.3	£"245		1749.2
China Lake	A,14.50	4.909.4	1229.5	9.4611	2233.5	2548.5	2746.8	2612.2	2615.9	1.9461	1472.6	1033.7	810.8	8.9581
Decort	A.25.+6	938.2	1260.7	1172.3	1.4152	2.692.	2766.3	\$. [032	2382.6	2007.9	9.8181	1.4801	826.0	1642.9
E! 7ero	A.01-60	0.14	1236.0	2.0(4	5-8261	2010.2	1.4614	1363.4	2151.0	E.1212	1356.9	1074.4	849.2	1624.5
Freanc	R. 94.96	656.7	1012.3	1545.8	3.2902	3483.8	1.2275	2485.1	2121.3	1. Swot	1439.2	C. 888	\$74.2	1710.6
Long Reach	8.64.CE	927.7	1715.0	1609.9	1.1001	2064.5	2139.9	\$.99.9	2099.8	1701.0	1326.4	1003.5	846.0	1597.7
Los Angeles	A.95.66	926.1	\$214.0	1.818.7	6.0241	1059.5	2119.1	\$101.5	2019.5	1681.4	1317.0	6. 0001	848.5	1593.6
brack) and	R.++.ct	107.6	1071.5	1456.3	1.2261	2213.3	2350.0	2322.5	2052.4	1.1011	1212.0	822.1	647.0	1535.2
Point Mugu	R.1 .NC	927.2	1229.9	1.2631	0.1611	2018.0	2054.6	2118.3	1934.9	1. 1081	1296.1	1004.4	856.2	1552.2
Sucramento	A. 16.80	5.945	•.929.4	1458.4	9.002	3434.8	2483.8	2688.0	2368.3	1.9061	P. 1184	781.9	\$38.4	1642.9
San Dirgo	R. ++.25	4.516	1266.3	1431.6	1.9261	1002.8	2062.2	2186.5	2051.3	1717.4	C. 6761	1082.7		1598.0
San Francisco	R. / C./C	107.6	1009.3	1455.1	1920.0	2225.6	2375.9	9.1665	2136.5	1742.0	1226.1	821.4	6.2.4	1552.8
Sente Merie	8.45.46	833.8	1140.9	1581.9	1921.0	2140.6	2348.6	2341.2	2105.1	1730.3	1353.4	973.6	803.9	1401.9
Sunnyvale	H. \$2.46	137.6	1037.5	1485.3	1943.6	2276.8	2452.8	2441.3	2167.1	1759.5	1248.4	841.1	660.3	1587.8

Table 1-1 Total Horizontal Solar Radiation Intensity (Btu/ft²-day) from Solar Energy Research Institute

Nature 600.7 1134.7 5136.7 </th <th>STATE AND STATION</th> <th>LATITUDE</th> <th>JAN U</th> <th>100</th> <th>M</th> <th>APR</th> <th>MAY</th> <th>Int</th> <th>JUL .</th> <th>AUC</th> <th>SEP.</th> <th>0CT</th> <th>NOR</th> <th>DEC</th> <th>ASTUAL</th>	STATE AND STATION	LATITUDE	JAN U	100	M	APR	MAY	Int	JUL .	AUC	SEP.	0CT	NOR	DEC	ASTUAL
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	COLORADO														
ord 1973'R 60.1 1127.0 139.3 199.4 239.5 295.2 204.4 137.4 99.1 31.1 r Jourtian 37'7 X 11.1 11.1 113.0 159.5 196.5 169.5 193.4 191.1 191.1 191.1 r Jourtian 37'7 X 11.1 113.0 159.5 166.5 169.5 161.1 191.1 1	Colorado Springs	N.67.80	890.7	1178.2	1550.0	5.1661	2128.7	2368.9	2211.0	2025.4		9.82CT	944.2	P.187.9	1594.1
37 Jourtian 39° 778 79.1 113.0 1533.5 196.4 209.4 209.4 209.5 265.2 186.5 184.5 184.5 184.5 191.1 311.1 365.1 365.5 184.5	Denver	19.45.8	840.1	1127.0	4.0221	1879.3	9.4615	1.0262	2272.6	2044.1	1726.8	1300.5	883.5	\$.101	1568.4
Circuit Circuit <t< td=""><td>Crar. Junition</td><td>X. 2 .65</td><td>191.3</td><td>0.0111</td><td>1553.5</td><td>1986.4</td><td>2379.8</td><td>2598.5</td><td>2465.2</td><td>2182.0</td><td>1834.4</td><td>0.245.0</td><td>918.1</td><td>6.166</td><td>1658.7</td></t<>	Crar. Junition	X. 2 .65	191.3	0.0111	1553.5	1986.4	2379.8	2598.5	2465.2	2182.0	1834.4	0.245.0	918.1	6.166	1658.7
(1) (1) <td>CONNECTION</td> <td></td>	CONNECTION														
Anome Nay 19*54*N 1403.0 1484.1 1324.3 2170.0 207.4 396.4 1011.0 393.9 444.9 483.6 Anome Nay 3*70' 371.4 877.0 148.1 1710.2 182.4 1317.1 981.9 444.9 483.6 Anome Nay 3*70' 372.0 153.0 1148.2 1480.1 1710.2 182.4 1317.1 981.9 444.9 483.6 Anote Nature 952.9 1135.0 1148.2 1480.1 1710.2 182.4 187.1 189.1 481.1 190.0 481.1 190.1 411.1 481.1 481.1 481.1 190.1 411.1 481.1 <t< td=""><td>Karl tord</td><td>N.95.14</td><td>411.5</td><td>714.7</td><td>978.5</td><td>1315.0</td><td>1568,5</td><td>1685.0</td><td>1649.0</td><td>1421.7</td><td>1154.5</td><td>852.9</td><td>6.794</td><td>365.1</td><td>1050.3</td></t<>	Karl tord	N.95.14	411.5	714.7	978.5	1315.0	1568,5	1685.0	1649.0	1421.7	1154.5	852.9	6.794	365.1	1050.3
Ame Name	ÇUPA														
K S71.4 877.0 1144.2 1400.1 1710.2 1887.4 1872.4 1811.7 983.4 144.4 1317.7 983.4 144.4 1317.7 983.4 144.1 183.4 T OF COLORMAL 375.7 1125.0 1438.4 1135.0 1438.4 1140.2 1480.1 1100.2 1817.4 140.0 1001.8 50.9 441.1 Micula 377.4 135.3 1352.0 1458.7 1956.2 1985.2 1952.0 1817.4 140.0 1001.8 401.1 Micula 307.90 1391.4 1393.7 1956.5 1885.7 1952.0 1895.2 1952.0 1897.2 1912.4 1910.1 1910.1 1910.1 1910.1 1910.1 1911.4	Guard animo Bay	N. 45.61	1403.0	1648.1	C.9261	2120.0	2037.6	1960.8	2082.4	2002.5	1824.0	1584.6		0.0101	1777.9
RUO 39°40'H 571.4 827.0 1140.1 110.2 1682.6 1132.0 1430.0 1417.4 1317.1 93.9 444.4 93.9 441.1 T OF COLOMBIA 39°57'H 572.0 613.3 1135.0 1456.9 1131.1 160.1 157.4 1301.1 96.9 411.1 Alicelia 39°44'F 552.9 1125.9 1474.0 1393.2 1995.2 1437.4 1301.1 96.0 411.1 Alicelia 39°5.4 114.0 153.1 1855.7 1855.2 1855.2 1855.2 1855.2 1855.2 1855.2 1855.2 1855.2 1855.2 1855.2 1855.7 1875.1 1875.1 1875.1 1875.1 1875.1 1875.1 1875.1 1875.2 1855.7 1185.2 1875.2 1855.7 1187.2 1875.1 1875.2 1875.2 1875.2 1875.2 1875.2 1875.2 1875.2 1875.2 1875.2 1875.2 1875.2 1875.2 1875.2 1875.2 1875.2 <td>DELAVARE</td> <td></td>	DELAVARE														
T OF COLOMBIA T OF COLOMBIA 1 OF COLOMBIA 39'57'H 572.0 815.3 1125.0 1456.4 1141.1 1900.0 1817.5 1617.4 1140.0 1001.8 650.9 481.1 hilocula 29'44'H 895.9 1145.3 1521.7 1855.7 1895.3 1895.1 1895.3 <	41 Inington	10-40-N	\$71.4	827.0	1149.2	1480.1	1710.2			1614.6	1.1101	983.9	6.44.9	489.6	1207.7
Cloar/Stacling 39'57'1 572.0 613.3 1135.0 168.6 114.1 1900.5 1617.5 114.0 600.3 650.3 610.1 650.3 610.1 610.3 650.3 610.1 610.3 650.3 610.1 610.3 650.3 610.1 610.3 650.3 610.1 610.3 650.3 610.1 610.3 650.3 610.1 610.3 <td>DISTRICT OF COLUMNIA</td> <td></td>	DISTRICT OF COLUMNIA														
bicula 29*44'K 552.9 1125.9 1474.0 1875.7 1852.7 1852.7 1852.7 1852.7 1852.7 1852.7 1852.7 1852.7 1852.7 1852.7 1852.7 1852.7 1857.7 1857.7 1857.7<	Washington/Sterling	38-57'N	\$72.0	615.3	1125.0	1458.9	1.81/1			1617.4	0.0464	1001.8	650.9	1.184	1208.4
hicula 29-44'K 652.9 1135.9 1474.0 1855.7 1855.7 1855.2 1852.2<	FLORIDA														
mulli 30°30°K 899.9 1144.3 1521.7 1855.3 1865.2 1802.0 1644.2 142.3 1221.1 946.0 817.4 25°46°B 1057.4 1134.0 1603.3 1893.0 1843.6 1707.9 1707.9 1453.1 1952.3 1106.7 1114.0 1603.3 1893.0 1843.4 1707.9 1463.1 1902.0 1444.2 1402.1 1902.7 1116.4 1107.8 950 817.4 27'56°B 717.6 548.9 1035.6 1845.1 1903.7 1803.7 1803.7 1802.7 1802.7 1314.4 1107.8 915.7 31'357 751.0 1015.2 1396.5 1751.4 1852.3 1801.5 1802.7 1314.4 1107.8 912.7 915.7 915.7 915.7 916.7 915.7 915.7 915.7 915.7 915.7 915.7 915.7 915.7 915.7 915.7 915.7 915.7 915.7 915.7 915.7 915.7 915.7 915.	Apaluchicula	N	852.9	1125.9	1474.0	1878.9	2090.6	1996.3	1813.6	1687.5	1535.4	4.1761	10401	817.6	B.C(1)
25*60*b 1057.4 1114.0 1607.3 1899.0 1847.4 1752.7 1853.1 1845.3 1302.7 1114.4 1107.3 955.4 27*58*b 1010.7 1259.4 1591.7 1906.5 1998.2 1847.4 1752.7 1653.1 1492.0 1346.4 1107.3 955.4 27*58*b 717.6 940.9 1301.6 1465.1 1901.7 1401.7 1402.0 1395.4 647.4 317*32 751.0 1015.2 1331.6 1465.1 1901.7 1401.7 1401.7 982.4 647.1 731.7 911.1 751.7 911.1 751.7 911.1 751.7 711.4 752.6 145.7 751.7 911.1 751.7 711.7 911.1 751.7 711.1 751.7 711.1 751.7 711.1 751.7 711.1 751.7 711.1 751.7 711.1 751.7 711.1 751.7 711.1 751.7 711.1 751.7 701.3 751.7 701.3 751.7	Jacksonvî []e	N.06.0E	6.99.9	1164.3	1521.7	1855.7	1956.3	1865.2	1802.0	1694.2	1442.3	1223.1	9.96	817.6	1438.2
27*56*V 1010.7 1259.4 1593.7 1906.5 1996.5 1991.6 1175.1 1593.7 1906.5 1991.6 1175.1 1107.4 910.7 1175.6 9103.6 1664.2 1653.6 1913.6 1812.2 1706.5 1195.9 874.2 914.3 1745.1 914.5 174.5 914.5 174.5 914.5 174.5 914.1 1553.7 1553.6 1915.5 1872.5 1195.5 817.2 1709.5 814.5 1875.7 1195.7 914.1 1553.7 915.7 1553.7 915.7 915.7 1553.7 a 122*8* 1194.6 1105.2 1306.5 1561.4 1852.0 1654.5 1845.5 1847.5 1845.7 1951.7 1553.7 b 119*4.7 1207.7 1441.0 1652.7 1795.6 1561.7 1795.6 1644.5 1684.5 1847.5 1561.7 1553.7 1552.6 1114.4 1552.7 1114.6 1152.6 1114.6 11152.6 11124.6 11152.6 11124.6 11154.7 1540.4 1154.7 1540.4 1154.7 1540.7	Xiacı	25-48.2	1057.4	1314.0	1603.3	1859.0	1843.6	1707.9	1763.4	1629.8	1456.3	1302.7	1110.4	1019.1	1472.9
31'39'K 717.6 948.9 1303.6 1913.6 1913.2 1708.5 182.2 1199.9 87.4 87.1 a 33'39'K 717.6 948.9 1303.6 1913.6 1913.5 1412.2 1708.5 182.4 874.3 a 33'22'K 731.0 105.2 1338.5 1751.4 1952.7 1903.5 1620.4 1453.7 941.1 1301.6 1312.1 1403.6 1214.6 941.1 753.7 b 21'19'K 120'7 1441.0 1445.1 1892.5 2014.5 1931.6 1913.5 1753.5 941.1 1535.7 941.1 1535.7 941.1 1535.7 1441.0 1445.1 1753.5 1620.4 1465.7 1441.7 2554.8 1455.5 1884.5 1913.7 1540.1 1153.7 1535.7 1540.2 1540.7 1153.7 1540.1 1153.7 1545.7 1153.7 1545.1 1153.5 1545.7 1545.7 1545.7 1545.7 1545.7 1545.7 1545.	tanpa	27*58·W	1010.7	1259.4	1593.7	1906.S	1998.2	1847.4	1752.7	1653.1	1492.0	4.9461	1107.8	4.35.4	1492.3
13''39''R 717.6 960.9 1303.6 1665.2 1695.3 1913.6 1812.2 1706.5 1822.0 1190.9 622.9 674.2 13<'22''R	GEORUIA														
137:22'K 751.0 105.2 1328.4 1865.1 1903.7 1903.5 1667.1 1400.6 1219.4 916.5 720.9 nh 22'8'Y 794.7 1003.8 1398.5 1761.4 1852.3 1804.3 1783.5 1667.1 1810.6 1216.7 941.1 751.7 rs 22'8'Y 794.7 1003.8 1398.5 1751.5 1813.5 1872.5 2024.5 2018.3 1911.1 1814.7 2554.6 1164.9 1010.3 rs 19'43'Y 1119.8 1244.2 1348.6 1813.5 1872.5 2024.5 2018.3 1911.1 1814.7 2554.6 1105.3 ulu 21'75'Y 119.8 1246.2 1348.6 1499.3 2004.4 2002.2 1964.5 1010.3 1409.4 1165.7 1010.3 ulu 21'75'Y 148.6 1482.6 1867.8 1867.8 1867.5 1010.3 1010.3 1019.3 1019.3 1019.3 1019.3 1019.3 1019.3 1019.3 1019.3 1019.3 1019.3 1019.3 1019.3 1019.3<	At lant .	A.66.56	3.117	968.9	3.5051	1686.2	1853.8	8.0101	1812.2	1708.5	1422.0	1199.9	882.9	674.2	1145.3
Anh 32* B'4.7 100.18 1396.5 1761.4 1852.3 1844.3 1783.5 1620.6 1362.7 1216.7 941.1 753.7 V:a Point 21'19'K 1207.7 1441.0 1455.1 1833.5 1872.5 2024.5 2018.3 1971.1 1814.7 355.4.8 1865.7 Viu 21'20'Y 1119.8 1246.2 1346.6 1833.5 1654.5 1624.5 1814.6 1372.1 1104.9 1019.3 Viu 21'20'Y 1119.8 1246.2 1346.6 1833.5 1654.5 1624.5 1816.1 1372.1 1104.9 1019.3 Viu 21'20'Y 1119.8 1246.2 1346.6 1353.0 1654.5 1624.5 1824.6 1372.1 1104.9 1019.3 Viu 21'59'K 1109.0 1299.7 1475.6 1430.1 1826.9 2004.4 2003.2 1986.5 1019.3 1019.3 Viu 21'59'K 1109.0 1299.7 1475.6 1824.0 1862.5 1845.3 1011.1 1144.2 1019.3 Viu 21'59'K 1394.1 1852.6 246.1.2 2461.2 2461.2 1191.2 1015.1 1019.3	August a	¥.22.55	751.0	1015.2	C.8CEI	1728.4	1865.1	1903.7	1803.5	1667.1	1409.6	1219.6	916.5	120.9	1361.6
No. 21'19'K 1207.7 1441.0 1645.1 1813.5 1972.5 2014.5 1971.1 1814.7 2554.6 1299.4 1165.7 ulu 21'20'Y 1119.6 1246.2 1346.6 1935.5 1624.5 1624.5 1624.5 1972.1 1104.7 2554.6 1372.1 1104.9 1019.2 ulu 21'20'Y 1119.6 1246.2 1346.6 1435.0 1658.5 1624.5 1849.3 2004.4 2002.2 1946.5 1372.1 1104.9 1019.2 ulu 21'20'Y 1179.6 1396.7 1755.6 1640.7 1857.8 1867.5 1845.5 1624.3 1372.1 1104.9 1019.2 21'20'Y 1109.0 1299.7 1405.6 1826.9 2004.4 2002.2 1965.5 1742.4 1449.4 1134.2 1039.7 40 1109.0 1299.7 1004.9 1826.9 2016.8 2196.5 1742.4 1449.4 1134.2 1059.1 157.2 40 139.1 609.0 1019.6 1842.5 2016.2 2196.5 1017.	denneves	32. 8.4	194.7	10+3.8	2.86CE	1761.4	1852.3	1844.3	1783.5	1620.0	1363.7	1216.7	941.1	1.020	1364.5
v:s Point 21'19'K 1207.7 1441.0 1645.1 1893.5 1971.1 1814.7 255.4.6 1244.4 1165.7 ulu 21'20'Y 1119.8 1246.2 1344.6 1375.1 1104.9 1019.3 ulu 21'20'Y 1179.6 1396.3 1621.7 1795.8 1949.3 2004.4 2002.2 1946.6 1372.1 1104.9 1019.3 ulu 21'20'Y 1179.6 1396.3 1621.7 1795.8 1949.3 2004.4 2002.2 1946.5 1910.1 1540.3 1019.3 21'50'Y 1109.0 1299.7 1475.6 1867.8 1862.5 1946.5 1910.1 1540.1 1193.2 1019.3 . 21'59'W 1103.0 1299.7 1475.6 1867.8 1862.5 1946.5 1772.1 1194.9 1019.3 1055.1 . 43'34.0 1351.0 1867.8 1867.8 1862.5 1911.3 1434.6 1373.2 1054.3 1057.2 1055.1 1055.1 1055.1 1055.1 1055.2 1055.2 1055.2 1055.2	HAWNED														
19*43'K 1119.6 1246.2 1343.6 1434.8 1553.0 1654.5 1624.5 1553.0 1654.5 1592.4 1546.6 1372.1 1104.9 1019.3 ulu 21*20'Y 1179.8 1396.3 1621.7 1795.8 1949.3 2004.4 2002.2 1566.5 1810.1 1540.3 1266.1 1132.5 ulu 21*59'K 1103.0 1299.7 1475.6 1640.7 1867.8 1867.5 1818.1 1742.4 1449.4 1153.2 1035.1 von 21*59'K 1103.0 1299.7 1475.6 1640.7 1867.8 1867.5 1818.1 1742.4 1449.4 1153.2 1035.1 von 43*24 1645.9 1824.0 1867.8 1867.5 1818.1 1742.4 1439.4 153.2 1053.1 von 43*24 1835.0 1826.5 2014.4 1824.5 2014.5 1772.4 1439.4 153.2.2 1053.1 von 46*23 1842.5 2014.4 2465.2 2014.4 2134.6 1351.4 1372.4 1401.5 177.	Barbers Point	X.61.12	1207.7	1441.0	1645.]	2.001	1972.5	2024.5	2018.3	1.1791	1814.7	8.4261	1299.4	1165.7	1462.4
ulu 21'20'V 1179.8 1396.3 1621.7 1795.8 1949.3 2004.4 2002.2 1966.5 1910.1 1540.3 1266.1 1132.5 21'59'Y 1100'0 1299.7 1475.6 1640.7 1824.0 1867.8 1862.5 1818.1 1742.4 1449.4 1154.2 1053.1 4)'14'V 695.3 539.7 1304.1 1826.9 2276.7 2463.2 2612.7 2196.5 1737.2 1137.8 628.3 437.2 tun 46'23'W 339.7 609.0 1019.6 1435.0 1842.5 2014.8 2335.8 1931.3 1434.6 859.8 412.8 286.1 15 10 10 11'47'W 507.0 759.5 1106.9 1459.0 1788.9 2007.0 1942.8 1719.4 1351.9 968.9 565.4 401.5 15 15'5 11'47'W 507.0 759.5 1106.9 1459.0 1788.9 2007.0 1942.8 1719.4 1351.9 968.9 565.4 401.5 15'5 11'47'W 507.0 759.5 1106.9 1459.0 1788.9 2007.0 1942.8 1709.4 1351.9 968.9 565.4 401.5 15'5 11'47'W 507.0 759.5 11'06.9 1459.0 1788.9 2007.0 1942.8 1709.4 1351.9 968.9 565.4 401.5 15'5 11'5 11'5 11'5 11'5 11'5 11'5 11'5	ніце	N-64-61	1119.8	1246.2	1348.6	1434,B	1553.0	1658.5	1624.5	1592.4	1546.8	1372.1	1104.9	1019.3	1.285.1
21'59'K 1103.0 1299.7 1475.6 1640.7 1867.8 1867.5 1818.1 1742.4 1449.4 1154.2 1053.1 .ton 43'34'U 435.3 839.7 1304.1 1826.9 2276.7 2463.2 2612.7 2196.5 1137.2 1137.8 428.3 437.2 .ton 45'23'U 339.7 509.0 1019.6 1825.5 2016.8 2135.0 1931.3 1439.6 437.2 266.1 205.6 4172.8 437.2 1055.1 2016.5 4172.8 437.2 1055.1 2055.6 4172.4 4154.2 405.3 401.5 1055.1 2057.0 1788.9 2007.0 1942.8 1055.9 401.5 2055.6 401.5 401.5 401.5 401.5 401.5 401.5 401.5 401.5 401.5 401.5 401.5 401.5 401.5 401.5 400.1 401.5 401.5 401.5 401.5 400.1 400.1 400.1 400.1 400.1 400.1 401.5 400.1 400.1 400.1 400.1 400.1 400.1 400.1 4	بالاستين المالين	21.20.4	1179.8	1396.3	1621.7	1795.8	1949.3	2004.4	2002.2	1966.5	1910.1	1540.3	1266.1	1132.5	1638.7
4)"34"L 495.3 839.7 1304.1 1826.9 2276.7 2463.2 2612.7 2196.5 1737.2 1137.8 628.3 437.2 ton 45"23"L 339.7 609.0 1019.6 1435.0 1842.5 2014.6 2335.6 1931.3 1434.6 859.8 412.3 286.1 15 41"47"L 507.0 759.5 1106.9 1459.0 1788.9 2007.0 1942.4 1351.9 968.9 555.6 401.5 16 31"47"L 507.0 759.5 1106.9 1459.0 1788.9 2007.0 1942.4 1351.9 968.9 565.6 401.5 16 31"50"L 515.0 1865.5 2007.0 1942.4 1351.9 968.9 565.6 401.5 16 31"50"L 515.0 1865.5 2007.0 1942.4 1353.9 1068.9 565.6 401.5 16 31"50"L 515.0 1855.5 2096.7 2058.2 1065.9 565.6 401.5	Lilmu	N.65.12	1103.0	1299.7	1175.6	1640.7	1824.0	1867.8	1862.5	1918.1	1742.4	1449.4	1154.2	1053.1	1524.2
n 49:23 89:3 89:7 104.1 1826.9 2276.7 2463.2 2612.7 2196.5 137.2 137.8 420.3 437.2 n 46'23'H 339.7 609.0 1019.6 1435.0 1842.5 2014.8 2335.8 1931.3 1434.4 859.8 412.8 266.1 1 46'23'H 509.7 1019.6 1435.0 1842.5 2014.8 2335.8 1931.3 1434.4 369.8 412.8 266.1 1 41'47'H 507.0 7395.5 1106.9 1865.5 2007.0 1941.4 1515.9 968.7 401.5 1 39'50'H 566.0 1143.0 1515.0 1865.5 2007.0 1943.4 1058.9 968.9 401.5 1 19'50'H 515.0 1865.5 2096.7 2056.2 1865.9 1056.9 401.5	EDAHG														
n 46'23'N 339.7 609.0 1019.6 1435.0 1842.5 2016.8 2335.6 1931.3 1434.6 859.8 412.8 266.1 41'47'W 507.0 759.5 106.9 1459.0 1788.9 2007.0 1941.8 1719.4 1351.9 968.9 565.4 401.5 1 39'50'W 584.7 860.9 1106.9 1459.0 1788.9 2007.0 1941.8 1719.4 1351.9 968.9 565.4 401.5 1 39'50'W 584.7 860.9 1143.0 1515.0 1865.5 2094.7 2058.2 1805.8 1068.3 490.1	Boise	N.46.64	6.284	1.968	1.4001	1826.9	2276.7	2463.2	2612.7	2196.5	1737.2	8.7611	420.3	437.2	1495.5
41'47'N 507.0 759.5 1106.9 1459.0 1788.9 2007.0 1943.8 1719.4 1353.9 968.9 565.6 401.5 1eld 39"50"E 584.7 860.9 1143.0 1515.0 1865.5 2094.7 2058.2 1805.8 1453.9 1068.3 676.6 490.1	Luwiston	N.EZ.94	1.966	0.803	1019.6	0.2641	1842.5	2014.8	2335.8	1931.3	1.4541	859.8	412.8	266.1	1210.1
A1*47'W 507.0 759.5 1106.9 1459.0 1788.9 2007.0 1943.8 1719.4 1351.9 968.9 545.4 401.5 e1d 39*50'W 584.7 840.9 1143.0 1515.0 1865.5 2094.7 2058.2 1805.M 1453.9 1048.3 674.6 490.1	t ct. frors														
39*50'# 584.7 860.9 1143.0 1515.0 1865.5 2094.7 2058.2 1805.8 1453.9 1068.3 676.6 490.1	Chic.Igo	N.(>.1+	507.0	2.927	1106.9	1459.0	1788.9	2007.0	8.6461	1719.4	9.L2CI	968.9	565.6	401.5	1215.1
-	Springfield	1.05-6 E	584.7	860.9	0.6411	1515.0	1865.5	2094.7	2058.2	1805.8	1453.9	1068.3	676.6	1.061	2.1001

Table 1-1 (continued) Total Horizontal Solar Radiation Intensity (Btu/ft²-day) from Solar Energy Research Institute

INDIANA									307 MIC	202	8	NON	Data	WINN
Evanyville.	18. 3.6	574.1	823.2	1151.0	1500.8	1782 4	1982.7	1 0201	1 2421	1403 2	tant o			
fadi section											A-1907	C. 799		B. F421
AT The Burn Paur		4.064		ISOL	- 26C	10.858.0	1.9461	L. 9081	1413.5	1324.0	0.114	1.972	416.6	1165.0
South Bend	4.21.11	415.7	659.6	992.5	1387.4	1722.5	1921.9	1852.4	1666.3	1291.3	909.2	497.1	340.3	1118.0
TOWN														
Des Moines	E.Z1.It	580.7	860.7	1180.5	1556.6	1867.5	2324.6	\$0.96.3	1827.9	9.5641	1067.8	658.3	486.9	1311.8
Mason City	N.6 -54	\$53.7	834.2	1168.0	1518.6	1095.3	8.0112	2084.2	3.25st	1405.4	1010.5	6. 665	443.2	1288.5
CUISAS													į	
bodge City	H.94.46	826.6	1122.0	1474.4	1885.8	1.6805	2358.2	2295.5	2055.3	1686.7	1300.7	1.698	6.161	1560.2
Topeka	N.7 .6E	6.089	0.149	1256.9	4.1491	1915.4	2126.4	2127.9	1910.0	1516.4	1146.6	111.6	583.5	1384.8
KENTUCKY														
Lexington	38. 2.8	5.245	279.5	2099.5	1479.2	1747.0	1.7991	1850.4	1685.3	1362.1	1044.2	651.3	485.5	1219.4
Coulsville	M. 11.86	\$45.3	789.3	1102.0	1466.7	1719.8	1903.5	1837.5	1480.2	1361.2	2042.2	652.8	487.9	1215.7
LOUTSTANA														
Lake Charles	M.1 .00	128.4	8. 6001	A.ELEL	1570.4	1849.4	1970.3	1781.7	1457.4	1485.2	1361.1	916.6	1.05.6	1364.6
Vew Orleans	R.65.67	4.458	6.1111	B.ALAL	1780.3	1.1401	\$.003.8	1812.5	3736.6	1513.6	0.2121	912.6	4.611	0. TEAL
Shreveport	M.82.20	762.3	1038.4	1341.5	1612.6	1866.2	2064.8	2013.9	1.7781	1552.9	1303.5	928.6	3.021	1.426.1
301 ME														
Caribou	N.25.91	419.3	724.0	1133.1	1414.2	1577.8	4757.4	1767.4	1300.7	1102.6	6.88.3	366.4	110.5	1063.1
Poctland	H.6E.E.	450.3	6.185	969.6	1303.9	1567.4	9.111.6	1659.1	1460.9	8.1211	\$22.4	454.3	362.9	1050.6
DINALTAND														
Balt imore	#. CT.65	5.485	840.0	2162.2	1487.9	1713.9	1.979.1	1873.2	1599.5	1330.3	9.166	6.048	6.994	1215.0
MASSACHUSETTS														
Bonton	#.22.24	475.5	109.6	1016.4	1325.8	1620.5	1617.1	1749.2	2-3841	1259.9	889.6	502.9	403.0	1104.7
NICHIGAK														
Detruit	#. 52.24	477.4	4.085	1000.2	0.9961	9.2111	1.9581	4.258t	1375.5	1253.2	876.1	477.8	343.5	1120.0
Crand Sapids	R.15.24	369.6	6.843	1014.4	9.1141	1755.2	1956.5	1914.4	1.676.3	1262.1	8.128	1.254	330.7	1135.3
Smult Ste. Marie	N. 82.91	324.8	6.508	1028.6	1383.3	1688.1	1810.8	1835.1	1522.7	1049.1	673.0	1.166	252.9	1041 9
MEMMESOTA														
Dujkith	N.05.91	338.6	672.8	1034.5	8.272.8	1642.5	1767.2	1854.3	1546.9	0.2601	724.6	1.0.86	291.7	1064.3
Minnapolis/St. Paul	H.ES.WY	464.0	743.9	1103.5	9.1441	2.1211	1927.5	1970.0	1687.0	1254.7	859.6	480.4	153.3	1170.2
14415212214													S.	8

Table 1-1 (continued) Total Horizontal Solar Radiation Intensity (Btu/ft²-day) from Solar Energy Research Institute

STATE AND STATELY NESSAURE	LATITUDE	Ň	2	¥.	T	MAY		Ę	VNC	245	S.	NOR	. PEC	-
Columbia	M.64.86	411.5	874.8	1178.8	1525.9	1879.8	2089.5	2216.1	1817.9	1450.4	1109.6	1.501	\$.554	3.7551
Vab: As City	7.01.65	\$12.9	1.168	1202.9	1575.0	1872.6	2079.6	1.5465	1862.4	1452.4	1092.3	C.1ct	\$11.5	1340.0
Si Ivouis	8.59.86	\$21.4	885.6	1.4021	1564.2	1871.3	2092.5	2049.5	1816.5	1459.2	1049.8	C.811	\$30.6	1326.4
MUTLARA														
RILLINGS	R.21.11	4619.0	163.2	1189.5	1526.3	1912.8	1.0115	2303.7	2022.4	1470.0	1.980	9.152	2.154	1324.7
Great Valla	R.62.11	\$20.5	720.2	1170.4	1488.7	1847.6	\$101.4	2329.0	9.0001	5.9161	924.6	9.164	2.960	1262.3
TIS.OULS	H. 55.91	911.6	5.4.2	\$11.5	1362.2	1782.5	1933.0	2.1265	1060.9	1357.6	5.550	410.2	2+2.2	1168.5
HERRASKA														
Knrrh Omeha	M. 22.14	6.424	8.248	3222.5	1558.4	1872.6	2122.5	2104.5	1059.5	2.6161	8.9401	1.446	5.112	1320.5
Scoresbluff	N.25.14	67%.7	\$20.5	1307.4	1668.0	1933.2	2236.4	2263.7	1449.5	1596.9	1145.0	5.057	575.1	1424.7
HEVACA														
6134	N.05-01	4.88.4	+ .+Cot	1463.0	1899.7	2303.3	7.0124	26.22.9	2315.4	1802.6	1323.5	812.1	617.0	1625.5
I AN Vegas	36. 5.8	978.0	5.9001	1823.5	2)11.0	2646.3	2117.8	1.9425	2354.8	2037.3	1539.6	1085.5	8.088	1964.2
- ED	N.07-65	\$.00å	1149.9	1649.4	2159.3	2523.1	\$101.4	2692.1	2405.7	1.1991	1431.0	\$12.3	\$105.5	1760.7
NEW MAMPSHIJRE														
Curi ard	H.21.C*	459.5	1.484	9.0.6	1.171	1371.1 1582.2 1704.6	1104.6	1674.6		1+55.3 1140.2	817.1	442.7	342.1	1053.0
NPW								S						
K-Wei h	A0-42'W	1.145	193.0	1106.7	1448 6	1487.1	1195.3	1759.9	1544.8	6.5751	950.9	2.165	4.454	1165.3
NEW MAXICO														
Albuquerque	B.E -55	1016.5	1342.0	1767.6	2228.	2538.1	2678.9	2488.6	2290.1	1.1791	1546.7	1.000	1. 129	1821.5
Famington	#. 45.91	944.5	1280.9	1493.0	2132.9	3-14+2	2445.5	2478.2	2252.1	1934.3	1.0141	1047.2	1.168	1766.3
Roswell	H. \$2.55	1046.5	1.2761	1801.4	2217.6	2.6545	2610.3	2440.6	2241.6	1913.0	1527.1	1.1611	951.0	0.0181
ANDY NOW														
Albuny	K.5+.2+	\$195.5	4.88.4	9.286	1335.2	1549.4	1549.9 1729.9	1724.9	1498.9	1170.3	617.3	1.123	9.856	1065.8
Buliato	R. 95.24	348.9	\$46.4	5.959	9.4161	1594.5	1.001.7	1776.4	1513.2	8.1214	764.4	+. 60+	283.3	1034.3
New York City (La Guardia)	H. 94-64	576.6	2.461	111.6	3456.6	1690.4	1690.4 1891.9	1744.1	1543.2	1280.1	930.6	0.692	454.8	101.4
NURTH CAROLINA		3												
Cape Halteras	K.91.56	6.85.6	952.2	1326.4	9.644	1961.8	2035.9	1920.6	1705.4	1470.4	4.9CIT	\$72.9	658.7	1375.0
Grupphero	N.5 .95	115.3	910.0	1313.2	1683.2	1869.0	1953.1	1843.6	1696.6	1417.6	9.1411	5.9.8	658.7	1303.3

Table 1-1 (continued) Total Horizontal Solar Radiation Intensity (Btu/ft²-day) from Solar Energy Research Institute

Table 1-1 (continued) Total Horizontal Solar Radiation Intensity (Btu/ft²-day) from Solar Energy Research Institute